As for the 1cycle approach, the implementation poses no particular difficulty: just
create a custom callback that modifies the learning rate at each iteration (you can
update the optimizer’s learning rate by changing self.model.optimizer.1lr). See the
“1Cycle scheduling” section of the notebook for an example.

To sum up, exponential decay, performance scheduling, and 1cycle can considerably
speed up convergence, so give them a try!

Avoiding Overfitting Through Regularization

With four parameters I can fit an elephant and with five I can make him wiggle his
trunk.

—John von Neumann, cited by Enrico Fermi in Nature 427

With thousands of parameters, you can fit the whole zoo. Deep neural networks typi-
cally have tens of thousands of parameters, sometimes even millions. This gives them
an incredible amount of freedom and means they can fit a huge variety of complex
datasets. But this great flexibility also makes the network prone to overfitting the
training set. We need regularization.

We already implemented one of the best regularization techniques in Chapter 10:
early stopping. Moreover, even though Batch Normalization was designed to solve
the unstable gradients problems, it also acts like a pretty good regularizer. In this sec-
tion we will examine other popular regularization techniques for neural networks: ¢,
and ¢, regularization, dropout, and max-norm regularization.

2. and £, Regularization

Just like you did in Chapter 4 for simple linear models, you can use ¢, regularization
to constrain a neural network’s connection weights, and/or €, regularization if you
want a sparse model (with many weights equal to 0). Here is how to apply ¢, regulari-
zation to a Keras layer’s connection weights, using a regularization factor of 0.01:

layer = keras.layers.Dense(100, activation="elu",
kernel_initializer="he_normal",
kernel_regularizer=keras.regularizers.12(0.01))

The 12() function returns a regularizer that will be called at each step during training
to compute the regularization loss. This is then added to the final loss. As you might
expect, you can just use keras.regularizers.11() if you want ¢, regularization; if

you want both €, and ¢, regularization, use keras.regularizers.11_12() (specifying
both regularization factors).

Since you will typically want to apply the same regularizer to all layers in your net-
work, as well as using the same activation function and the same initialization strat-
egy in all hidden layers, you may find yourself repeating the same arguments. This

364 | Chapter 11: Training Deep Neural Networks



makes the code ugly and error-prone. To avoid this, you can try refactoring your code
to use loops. Another option is to use Python’s functools.partial() function,
which lets you create a thin wrapper for any callable, with some default argument
values:

from import partial

RegularizedDense = partial(keras.layers.Dense,
activation="elu",
kernel_initializer="he_normal",
kernel_regularizer=keras.regularizers.12(0.01))

model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28]),
RegularizedDense(300),
RegularizedDense(100),
RegularizedDense(10, activation="softmax",
kernel_initializer="glorot_uniform")

D

Dropout

Dropout is one of the most popular regularization techniques for deep neural net-
works. It was proposed in a paper®” by Geoffrey Hinton in 2012 and further detailed
in a 2014 paper® by Nitish Srivastava et al., and it has proven to be highly successful:
even the state-of-the-art neural networks get a 1-2% accuracy boost simply by adding
dropout. This may not sound like a lot, but when a model already has 95% accuracy,
getting a 2% accuracy boost means dropping the error rate by almost 40% (going
from 5% error to roughly 3%).

It is a fairly simple algorithm: at every training step, every neuron (including the
input neurons, but always excluding the output neurons) has a probability p of being
temporarily “dropped out,” meaning it will be entirely ignored during this training
step, but it may be active during the next step (see Figure 11-9). The hyperparameter
p is called the dropout rate, and it is typically set between 10% and 50%: closer to 20—
30% in recurrent neural nets (see Chapter 15), and closer to 40-50% in convolutional
neural networks (see Chapter 14). After training, neurons don't get dropped any-
more. And that’s all (except for a technical detail we will discuss momentarily).

23 Geoffrey E. Hinton et al., “Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors,”
arXiv preprint arXiv:1207.0580 (2012).

24 Nitish Srivastava et al., “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” Journal of
Machine Learning Research 15 (2014): 1929-1958.

Avoiding Overfitting Through Regularization | 365



Figure 11-9. With dropout regularization, at each training iteration a random subset of
all neurons in one or more layers—except the output layer—are “dropped out”; these
neurons output 0 at this iteration (represented by the dashed arrows)

It’s surprising at first that this destructive technique works at all. Would a company
perform better if its employees were told to toss a coin every morning to decide
whether or not to go to work? Well, who knows; perhaps it would! The company
would be forced to adapt its organization; it could not rely on any single person to
work the coffee machine or perform any other critical tasks, so this expertise would
have to be spread across several people. Employees would have to learn to cooperate
with many of their coworkers, not just a handful of them. The company would
become much more resilient. If one person quit, it wouldn’t make much of a differ-
ence. It's unclear whether this idea would actually work for companies, but it certainly
does for neural networks. Neurons trained with dropout cannot co-adapt with their
neighboring neurons; they have to be as useful as possible on their own. They also
cannot rely excessively on just a few input neurons; they must pay attention to each of
their input neurons. They end up being less sensitive to slight changes in the inputs.
In the end, you get a more robust network that generalizes better.

Another way to understand the power of dropout is to realize that a unique neural
network is generated at each training step. Since each neuron can be either present or
absent, there are a total of 2V possible networks (where N is the total number of drop-
pable neurons). This is such a huge number that it is virtually impossible for the same
neural network to be sampled twice. Once you have run 10,000 training steps, you
have essentially trained 10,000 different neural networks (each with just one training
instance). These neural networks are obviously not independent because they share
many of their weights, but they are nevertheless all different. The resulting neural
network can be seen as an averaging ensemble of all these smaller neural networks.

366 | Chapter 11: Training Deep Neural Networks



In practice, you can usually apply dropout only to the neurons in
the top one to three layers (excluding the output layer).

There is one small but important technical detail. Suppose p = 50%, in which case
during testing a neuron would be connected to twice as many input neurons as it
would be (on average) during training. To compensate for this fact, we need to multi-
ply each neuron’s input connection weights by 0.5 after training. If we don’t, each
neuron will get a total input signal roughly twice as large as what the network was
trained on and will be unlikely to perform well. More generally, we need to multiply
each input connection weight by the keep probability (1 - p) after training. Alterna-
tively, we can divide each neuron’s output by the keep probability during training
(these alternatives are not perfectly equivalent, but they work equally well).

To implement dropout using Keras, you can use the keras.layers.Dropout layer.
During training, it randomly drops some inputs (setting them to 0) and divides the
remaining inputs by the keep probability. After training, it does nothing at all; it just
passes the inputs to the next layer. The following code applies dropout regularization
before every Dense layer, using a dropout rate of 0.2:

model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28]),
keras.layers.Dropout(rate=0.2),
keras.layers.Dense(300, activation="elu", kernel_initializer="he_normal"),
keras.layers.Dropout(rate=0.2),
keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal"),
keras.layers.Dropout(rate=0.2),
keras.layers.Dense(10, activation="softmax")

D

Since dropout is only active during training, comparing the train-
ing loss and the validation loss can be misleading. In particular, a
model may be overfitting the training set and yet have similar

o . training and validation losses. So make sure to evaluate the training
loss without dropout (e.g., after training).

If you observe that the model is overfitting, you can increase the dropout rate. Con-
versely, you should try decreasing the dropout rate if the model underfits the training
set. It can also help to increase the dropout rate for large layers, and reduce it for
small ones. Moreover, many state-of-the-art architectures only use dropout after the
last hidden layer, so you may want to try this if full dropout is too strong.

Avoiding Overfitting Through Regularization | 367



